在布匹的生产过程中,像布匹质量检测这种有高度重复性和智能性的工作只能靠人工检测来完成,在现代化流水线后面常常可看到很多的检测工人来执行这道工序,给企业增加巨大的人工成本和管理成本的同时,却仍然不能保证100 %的检验合格率(即“零缺陷”)。对布匹质量的检测是重复性劳动,容易出错且效率低。
流水线进行自动化的改造,使布匹
生产流水线变成快速、实时、准确、高效的流水线。在流水线上,所有布匹的颜色、及数量都要进行自动确认(以下简称“布匹检测”)。采用机器视觉的自动识别技术完成以前由人工来完成的工作。在大批量的布匹检测中,用人工检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。
特征提取辨识
一般布匹检测(自动识别)先利用高清晰度、高速摄像镜头拍摄标准图像,在此基础上设定一定标准;然后拍摄被检测的图像,再将两者进行对比。但是在布匹质量检测工程中要复杂一些:
1. 图像的内容不是单一的图像,每块被测区域存在的杂质的数量、大小、颜色、位置不一定一致。
2. 杂质的形状难以事先确定。
3. 由于布匹快速运动对光线产生反射,图像中可能会存在大量的噪声。
4. 在流水线上,对布匹进行检测,有实时性的要求。
由于上述原因,图像识别处理时应采取相应的算法,提取杂质的特征,进行模式识别,实现智能分析。
Color检测
一般而言,从彩色CCD相机中获取的图像都是RGB图像。也就是说每一个像素都由红(R)绿(G)蓝(B)三个成分组成,来表示RGB色彩空间中的一个点。问题在于这些色差不同于人眼的感觉。即使很小的噪声也会改变颜色空间中的位置。所以无论我们人眼感觉有多么的近似,在颜色空间中也不尽相同。基于上述原因,我们需要将RGB像素转换成为另一种颜色空间CIELAB。目的就是使我们人眼的感觉尽可能的与颜色空间中的色差相近。
Blob检测
根据上面得到的处理图像,根据需求,在纯色背景下检测杂质色斑,并且要计算出色斑的面积,以确定是否在检测范围之内。因此图像处理软件要具有分离目标,检测目标,并且计算出其面积的功能。
Blob分析(Blob Analysis)是对图像中相同像素的连通域进行分析,该连通域称为Blob。经二值化(Binary Thresholding)处理后的图像中色斑可认为是blob。Blob分析工具可以从背景中分离出目标,并可计算出目标的数量、位置、形状、方向和大小,还可以提供相关斑点间的拓扑结构。在处理过程中不是采用单个的像素逐一分析,而是对图形的行进行操作。图像的每一行都用
游程长度编码(RLE)来表示相邻的目标范围。这种算法与基于象素的算法相比,大大提高处理速度。
结果处理和控制
应用程序把返回的结果存入数据库或用户指定的位置,并根据结果控制机械部分做相应的运动。